
Contents lists available at ScienceDirect

Atmospheric Environment: X

journal homepage: www.journals.elsevier.com/atmospheric-environment-x

A system for developing and projecting PM2.5 spatial fields to correspond to
just meeting national ambient air quality standards

James T. Kellya,∗, Carey J. Janga, Brian Timina, Brett Gantta, Adam Reffa, Yun Zhub,
Shicheng Longb, Adel Hannac

aOffice of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
b College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China
c Institute for the Environment, University of North Carolina at Chapel Hill, NC, 27517, USA

A R T I C L E I N F O

Keywords:
Air quality modeling
PM2.5 projection
Cross validation
Spatial prediction model

A B S T R A C T

PM2.5 concentration fields that correspond to just meeting national ambient air quality standards (NAAQS) are
useful for characterizing exposure in regulatory assessments. Computationally efficient methods that incorporate
predictions from photochemical grid models (PGMs) are needed to realistically project baseline concentration
fields for these assessments. Thorough cross validation (CV) of hybrid spatial prediction models is also needed to
better assess their predictive capability in sparsely monitored areas. In this study, a system for generating,
evaluating, and projecting PM2.5 spatial fields to correspond with just meeting the PM2.5 NAAQS is developed
and demonstrated. Results of ten-fold CV based on standard and spatial cluster withholding approaches indicate
that performance of three spatial prediction models improves with decreasing distance to the nearest neigh-
boring monitor, improved PGM performance, and increasing distance from sources of PM2.5 heterogeneity (e.g.,
complex terrain and fire). An air quality projection tool developed here is demonstrated to be effective for
quickly projecting PM2.5 spatial fields to just meet NAAQS using realistic spatial response patterns based on air
quality modeling. PM2.5 tends to be most responsive to primary PM2.5 emissions in urban areas, whereas re-
sponse patterns are relatively smooth for NOx and SO2 emission changes. On average, PM2.5 is more responsive
to changes in anthropogenic primary PM2.5 emissions than NOx and SO2 emissions in the contiguous U.S.

1. Introduction

The U.S. air quality management system is a cyclical process driven
by the goals of meeting national ambient air quality standards (NAAQS)
(Bachmann, 2007; NRC, 2004). NAAQS are set by the U.S. Environ-
mental Protection Agency (EPA) for six criteria pollutants, including
fine particulate matter (PM2.5), to protect public health and welfare. Air
quality concentrations are projected to levels that just meet NAAQS as
part of risk and exposures assessments (REAs) often conducted during
NAAQS reviews. Specifically, air quality concentrations are projected
such that the highest monitored design value (DV; www.epa.gov/air-
trends/air-quality-design-values) in the area equals (i.e., just meets) the
NAAQS. REA analyses can consider many areas across the U.S. and
potential alternative NAAQS levels in addition to existing standards
(e.g., USEPA, 2010; USEPA, 2014). Projecting air quality to just meet
NAAQS for many scenarios is challenging due to the computational
expense of the photochemical grid models (PGMs) commonly used for

air quality projection.
In a previous study (Kelly et al., 2017), we described a method to

quickly project monitored PM2.5 concentrations to levels that corre-
spond to just meeting NAAQS. Strengths of the method include fast
application for multiple NAAQS in areas throughout the U.S., con-
sistency with EPA guidelines for projecting PM2.5 DVs in regulatory
assessments (USEPA, 2007), and the option to project DVs according to
multiple emission scenarios. A limitation of the method is that the
PM2.5 response factors were based on simulations with emission de-
creases only, whereas simulations for both emission decreases and in-
creases would facilitate broader application. The method also neglects
nonlinear interactions in chemistry when applied for combinations of
emission reduction cases. Furthermore, the approach projects PM2.5 at
monitoring sites, but the epidemiologic studies that inform health im-
pact assessments are increasingly based on spatial concentration fields
rather than concentrations at discrete monitoring sites (e.g., Crouse
et al., 2015; Di et al., 2017a; Di et al., 2017b; Shi et al., 2016).
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Many hybrid methods have been developed in recent years to create
PM2.5 spatial fields by combining information from monitoring and
other sources such as air quality models, satellites, and land-use data
(e.g., Beckerman et al., 2013; Berrocal et al., 2012; Di et al., 2016;
Friberg et al., 2016; Hu et al., 2017; Keller et al., 2015; Kim et al., 2017;
Kloog et al., 2014; Lv et al., 2016; van Donkelaar et al., 2015; Wang
et al., 2016; Wang et al., 2018). Predictions from these methods agree
reasonably well with withheld observations in cross validation (CV)
assessments. However, typical CV withholding approaches may over-
estimate predictive capability in areas with limited or no monitors
(Huang et al., 2018). Recently, a Data Fusion Tool (DFT) was developed
to facilitate the creation and evaluation of spatial concentration fields
(Li et al., 2019; www.abacas-dss.com/abacas/Software.aspx). DFT
currently develops spatial fields according to three methods: Voronoi
neighbor averaging (VNA), enhanced-VNA (eVNA), and the downscaler
approach of Berrocal et al. (2012). However, DFT versions applied to
date do not enable the spatial cluster withholding approaches re-
commended in recent studies to thoroughly assess the predictive cap-
ability of spatial prediction models (Huang et al., 2018; Lv et al., 2016;
Young et al., 2016).

In this study, a system for generating, evaluating, and projecting
PM2.5 spatial fields to correspond with just meeting PM2.5 NAAQS is
developed and demonstrated. DFT is applied to predict gridded PM2.5

concentration fields according to three methods and evaluate predic-
tions using CV based on standard and spatial cluster withholding ap-
proaches. The method of Kelly et al. (2017) is updated to enable pro-
jection of PM2.5 spatial fields in addition to monitored concentrations.
The system is then demonstrated for a case study in the Houston-The
Woodlands-Sugar Land core based statistical area (CBSA) in Texas.

2. Methods

The system for projecting PM2.5 spatial fields to correspond to just
meeting NAAQS for air quality and health impact assessments is shown
in Fig. 1. First, total and speciated PM2.5 data are acquired from the air
quality system (AQS) database of measurements from U.S. air quality
networks (www.epa.gov/aqs). PM2.5 concentrations are also simulated
for 2015 baseline and emission sensitivity cases using the Community
Multiscale Air Quality (CMAQ; www.epa.gov/cmaq) model to provide a
national modeled field of PM2.5 and estimates of how the field would
respond to changes in emissions. Sensitivity simulations were

conducted for percent changes in U.S. anthropogenic emissions of NOx
and SO2 of −100%, −75%, −50%, −25%, +25%, +50%, and +75%
and percent changes in U.S. anthropogenic primary PM2.5 emissions of
−50% and +50%. The suite of sensitivity simulations developed here
are similar to those of Kelly et al. (2017) but include cases with emis-
sion increases and are relative to a baseline simulation for 2015 rather
than 2011. More details on the CMAQ modeling are provided in the
Supplementary Information, Section S1.

Second, DFT predicts daily average PM2.5 concentrations on a spa-
tial grid covering the contiguous U.S. according to three methods (VNA,
eVNA, and downscaler) using PM2.5 concentrations from monitors and
the 2015 baseline CMAQ simulation. The VNA method interpolates
monitored concentrations to a spatial grid using inverse-distance-
squared weighted averaging of monitored concentrations in neigh-
boring Voronoi polygons. The eVNA method applies VNA interpolation
to monitored concentrations that have been scaled by the ratio of the
CMAQ concentration in the grid cell containing the prediction point to
the CMAQ concentration in the grid cell containing the monitor (Fann
et al., 2018). The downscaler approach is a Bayesian statistical model
that regresses CMAQ predictions on monitor data and uses the resulting
relationships to predict PM2.5 based on a CMAQ input field (Berrocal
et al., 2012; USEPA, 2017).

Relative response factors (RRFs; USEPA, 2007) are used to project
PM2.5 concentrations at monitor locations and on the spatial grid. RRFs
are calculated using predictions from the baseline and emission-sensi-
tivity CMAQ simulations with the Software for Model Attainment Test-
Community Edition (SMAT-CE; www.epa.gov/scram/photochemical-
modeling-tools). RRFs for PM2.5 components are calculated as the
ratio of the component concentration in the sensitivity simulation to
that in the baseline simulation. Total PM2.5 RRFs are then calculated as
the weighted average of the component RRFs using speciated con-
centrations based on observations as weighting factors (Kelly et al.,
2017). This step results in PM2.5 RRFs for each emission sensitivity case
at each monitor and on the spatial grid. The PM2.5 RRFs corresponding
to the simulated emission sensitivity cases are then interpolated across
the range of emission changes from −100 to 100% for each emission
scenario.

Third, the interpolated PM2.5 RRFs, PM2.5 concentrations at moni-
tors, and the baseline PM2.5 spatial field are input to the air quality
projection tool (APT) developed here. APT iterates over projections of
PM2.5 DVs at monitors in the selected area using RRFs corresponding to

Fig. 1. Overview of system for projecting PM2.5 spatial fields to correspond to just meeting NAAQS. SANDWICH: Sulfate, Adjusted Nitrate, Derived Water, Inferred
Carbonaceous material balance approach (Frank, 2006).
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different emission reduction levels until the target combination of 24-hr
and annual standards is just met (i.e., the highest PM2.5 DV in the area
equals the standard). This step identifies the percent emission reduction
required to just meet the NAAQS at the controlling monitor (i.e., the
monitor requiring the greatest percent emission reduction). The portion
of the PM2.5 spatial field overlapping the selected area is then extracted
from the national field and is projected using the spatial field of RRFs
corresponding to the percent emission reduction needed for the moni-
tors in the area to just meet the NAAQS.

Finally, the baseline and projected PM2.5 spatial fields are input into
downstream programs for air quality impact assessment or potentially
the Environmental Benefits Mapping and Analysis Program –
Community Edition (BenMAP-CE; Sacks et al., 2018) for health impact
assessment.

3. Results and discussion

3.1. PM2.5 spatial fields and cross validation (CV)

Annual average PM2.5 concentrations over the contiguous U.S.
predicted by VNA, eVNA, CMAQ, and downscaler for 2015 are shown in
Fig. 2. The VNA spatial field is relatively smooth and has greater
average PM2.5 (7.59 μgm−3) than the other methods
(5.46–7.11 μgm−3) due to interpolation of relatively high concentra-
tions observed in urban areas to surrounding areas. Population-
weighted average PM2.5 based on VNA (8.58 μgm−3) is similar to that
based on downscaler (8.46 μgm−3) suggesting that VNA and down-
scaler predict similar concentrations in urban areas. The difference
between the average and population-weighted average concentration is
greatest for the CMAQ field due to relatively sharp gradients between
urban and surrounding areas. Due to the influence of these gradients on
the eVNA interpolation of monitored concentrations, the average and
population-weighted average concentrations for eVNA are lower than
for VNA and downscaler (Fig. 2).

Predictions of VNA, eVNA, and downscaler were evaluated using
ten-fold CV as follows. The monitoring sites were first divided into ten
subsets or “folds.” One fold (10% of the monitors) was then withheld in
the VNA and eVNA interpolations and the fitting of the downscaler
model, and PM2.5 predictions were made at the locations of the with-
held monitors using each method. These steps were then repeated for

the other nine folds to yield a CV prediction from each method at each
site. Regional R2 based on this approach ranges from 0.35 (Northwest)
to 0.82 (Upper Midwest) for downscaler, 0.51 (Northwest) to 0.84
(Upper Midwest) for VNA, and 0.18 (Northwest) to 0.74 (Ohio Valley)
for eVNA (Table S2).

The spatial prediction models performed relatively well in regions
where CMAQ performed well. For instance, R2 for CMAQ predictions is
0.20 in the Northwest, where CV R2 ranges from 0.18 to 0.51, and is
0.42 in the Upper Midwest, where CV R2 ranges from 0.73 to 0.84.
Regional performance for the spatial prediction models is strongly
correlated with performance for CMAQ (r: 0.6–0.8; Fig. S4). The spatial
prediction models also performed relatively well in regions where
sources of PM2.5 heterogeneity are limited. For instance, R2 is fre-
quently low for sites in the western U.S. where terrain is complex and
wildfire emissions strongly influence PM2.5 concentrations (Fig. S2).
Previous studies have also reported challenges in modeling PM2.5 in the
western U.S. for these reasons (Di et al., 2016; Geng et al., 2018; Hu
et al., 2017; Wang et al., 2018). Finally, the spatial prediction models
performed well in areas where monitor siting is dense. For instance, the
average R2 is 0.78 for the downscaler method for sites within 22 km of
another site and is 0.67 for sites whose nearest neighbor is farther than
22 km (i.e., the median nearest-neighbor distance). The higher density
of monitors in areas with higher PM2.5 concentrations explains in part
the trend of increasing R2 with increasing observed PM2.5 concentration
(Fig. S3).

To further investigate the influence of monitoring density on CV
results, ten-fold CV was repeated for January and July for cases where
monitors within a specified radius of the primary withheld monitor
were also withheld. In Fig. 3, national total R2 based on predictions at
the primary withheld monitors is shown as a function of the with-
holding radius. As the radius increases from 0 to 50 km, the number of
in-sample monitors decreases from 938 (90% of available monitors) to
628 (60% of available monitors), and total R2 decreases for all methods.
For example, total R2 for downscaler decreases from 0.65 to 0.47 in
January as the withholding radius increases from 0 to 50 km. These
results demonstrate that favorable statistics for densely monitored areas
do not necessarily imply favorable performance in more sparsely
monitored parts of the domain.

Fig. 2. Predictions of 2015 annual average PM2.5 over the contiguous U.S. based on (a) VNA, (b) eVNA, (c) CMAQ, and (d) downscaler. Avg and PopAvg indicate the
average and population-weighted average PM2.5 in μg m−3, respectively.
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3.2. PM2.5 RRFs

PM2.5 RRFs corresponding to the two emission cases are shown in
Fig. 4 for the first and third quarters of 2015 at 672 sites. PM2.5 ob-
servations and spatial fields are projected by multiplication with PM2.5

RRFs (e.g., RRFs less than one result in lower projected PM2.5 than
baseline PM2.5). For the NOx and SO2 case, there is curvature in the
RRF-emission change relationship during January through March due
to the influence of chemical feedbacks of NOx on sulfate and nitrate
production under conditions of low photochemical activity in winter
(e.g., Pusede et al., 2016; Shah et al., 2018). During July through
September, the RRF-emission change relationship is approximately
linear and indicates a roughly 9% change in PM2.5 for a 50% change in
NOx and SO2 emissions on average. For primary PM2.5 emission
changes, the RRF-emission change relationship is approximately linear
in both quarters and indicates a roughly 18% change in PM2.5 for a 50%
change in emissions on average during July through September.

Spatial fields of annual average PM2.5 RRFs for 50% reductions in
emissions of primary PM2.5 and NOx and SO2 are shown in Fig. 5. NOx
and SO2 emission reductions result in PM2.5 RRFs less than about 0.9 in
broad areas of the eastern U.S. and California where PM2.5 sulfate and
nitrate concentrations are elevated (e.g., Hand et al., 2012). The
average PM2.5 RRF (0.93) is close to the population-weighted average
RRF (0.92) for the NOx and SO2 case due to the spatially smooth re-
sponse of secondary PM2.5 to precursor emission reductions. In contrast,
the average PM2.5 RRF for the primary PM2.5 emission case (0.86) is
higher than the population-weighted average RRF (0.80) indicating
that PM2.5 is relatively responsive to primary PM2.5 emission reductions
in populated areas. Overall, anthropogenic primary PM2.5 emission

reductions have a larger influence on PM2.5 in urban than rural areas
and a greater influence on average than the same percent reduction in
NOx and SO2 emissions (Fig. 5).

3.3. Case study: Houston-The Woodlands-Sugar Land, Texas

In this section, the projection approach described above is illu-
strated for a case study in Houston, Texas for the existing levels of the
annual (12 μgm−3) and 24-hr (35 μgm−3) PM2.5 NAAQS. The Houston
case study was selected because the PM2.5 spatial response patterns for
Houston are common to many of the urban areas we examined in the
U.S. As in Kelly et al. (2017), the PGM-based projections are compared
with projections of a statistical approach known as the proportional
method that has been used in previous NAAQS reviews. In the pro-
portional method, the spatial field is uniformly scaled by a fixed per-
centage that corresponds to the percent difference between the highest
PM2.5 DV in the area and the NAAQS level. For brevity, results are
presented below for projections of the downscaler field; results for
projections of the VNA and eVNA fields are provided in the supple-
mentary information.

In the nine counties that comprise the Houston-The Woodlands-
Sugar Land CBSA, the highest 2014–2016 annual PM2.5 DV is
11.2 μgm−3 and the highest 24-hr PM2.5 DV is 22 μgm−3 both in Harris
County. Compared with existing NAAQS levels, the highest annual DV
is 7% below the annual NAAQS level and the highest 24-hr DV is 59%
below the 24-hr NAAQS level. The percent change in the downscaler
PM2.5 field associated with projecting DVs in the CBSA to just meet the
NAAQS is shown in Fig. 6 for four cases: (a) proportional, (b) primary
PM2.5 emission changes, (c) NOx and SO2 emission changes, and (d)
elimination of 50% of the difference between DVs and the NAAQS level
with NOx and SO2 emission changes and 50% with primary PM2.5

emission changes (i.e., ‘Combined’ in Fig. 6). The proportional method
uniformly projects PM2.5 in each grid cell by the greatest percent dif-
ference between the PM2.5 DVs and the NAAQS (i.e., −7%). In the
primary PM2.5 projection case, grid cells near the controlling monitor
are also projected to concentrations about 7% higher than baseline
concentrations, but smaller absolute percent changes occur in sur-
rounding grid cells. This pattern results from the relatively high re-
sponsiveness of PM2.5 to primary PM2.5 emission changes in central
Houston compared with the outlying areas. For the NOx and SO2 pro-
jection case, the opposite behavior occurs (i.e., PM2.5 concentrations in
the outlying cells increase by greater than the 7% increase required at
the controlling monitor in central Houston). The relatively low re-
sponsiveness of PM2.5 in central Houston to NOx and SO2 emission
changes is consistent with the location of important SO2 sources outside
of the urban core and chemical feedbacks of NOx changes on HOx
precursors (e.g., Pusede et al., 2016). The PM2.5 response pattern for the
combined emission case is similar to that of the proportional method
due to the superposition of opposite response patterns for the primary
PM2.5 and NOx and SO2 emission cases (Fig. 6).

Average and population-weighted average changes in PM2.5 con-
centration (ΔPM2.5) are provided in Table 1 for projection of the

Fig. 3. Total R2 for downscaler, VNA, and eVNA as a function of withholding radius for January and July 2015 (grey text indicates the number of in-sample
monitors).

Fig. 4. PM2.5 RRFs at U.S. monitoring sites for changes in anthropogenic pri-
mary PM2.5 and NOx and SO2 emissions during the first and third quarters of
2015. Grey lines indicate individual sites; blue lines indicate mean. (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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downscaler field for the four cases in the Houston example. Average
ΔPM2.5 ranged from 0.49 μgm−3 for the primary PM2.5 case to
1.05 μgm−3 for the NOx and SO2 case. Population-weighted average
ΔPM2.5 ranged from 0.61 μgm−3 for the primary PM2.5 case to
1.08 μgm−3 for the NOx and SO2 case. The relatively large difference
between the average and population-weighted average ΔPM2.5 for the
primary PM2.5 emission case is driven by the relatively high sensitivity
of PM2.5 concentrations to primary PM2.5 emissions in the most popu-
lous county in the CBSA (Harris). For the combined emission and pro-
portional projection cases, average ΔPM2.5 values are between the re-
latively low value for the primary PM2.5 case and high value for the
NOx and SO2 case and are similar in magnitude (i.e., 0.73 μgm−3 for
the combined emission case and 0.71 μgm−3 for the proportional
method). The average ΔPM2.5 values for projection of the downscaler
field were between values for projection of the eVNA and VNA fields
(Table S3). Projecting fields based on multiple approaches provides
flexibility for characterizing the sensitivity of health impacts to dif-
ferent air quality scenarios or using the most suitable approach for a
given application.

4. Summary and conclusions

A system for generating, evaluating, and projecting PM2.5 spatial

fields to correspond with just meeting PM2.5 NAAQS is developed and
demonstrated. In ten-fold CV tests, regional R2 ranges from 0.35 to 0.82
for downscaler, 0.51 to 0.84 for VNA, and 0.18 to 0.74 for eVNA. CV
results based on standard and spatial cluster withholding approaches
indicate that performance of the methods improves with decreasing
distance to the nearest neighboring monitor, improved PGM perfor-
mance, and increasing distance from sources of PM2.5 heterogeneity
(e.g., complex terrain and fire). Performance also tends to be better for
sites with higher observed concentrations, possibly due to the higher
density of monitors in areas with relatively high PM2.5 concentration.
The APT projection tool developed here is found to be effective for
quickly projecting PM2.5 fields according to realistic spatial response

Fig. 5. PM2.5 RRFs for 50% reductions in U.S. anthropogenic (a) NOx and SO2 and (b) primary PM2.5 emissions. Text indicates average and population-weighted
average values.

Fig. 6. Percent change in 2015 annual average PM2.5

(downscaler) associated with projecting 2014–2016 DVs at
monitors to just meet NAAQS according to four spatial re-
sponse patterns for counties in the Houston area. ‘Other’
indicates a monitor that was used in developing the spatial
field but not in projecting 2014–2016 DVs, because this
monitor began sampling in 2015.

Table 1
Summary of results for the Houston case study.

Projection Case ΔEmission
Primary PM2.5

(%)

ΔEmission
NOx and SO2

(%)

Average
ΔPM2.5 (μg
m−3)

Pop. Wt.
Avg. ΔPM2.5

(μg m−3)

Primary PM2.5 14 0 0.49 0.61
NOx and SO2 0 92 1.05 1.08
Combined 6 44 0.73 0.81
Proportional N/A N/A 0.71 0.77
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patterns based on air quality modeling for multiple emission cases.
PM2.5 tends to be most responsive to primary PM2.5 emissions in urban
areas, whereas response patterns are relatively smooth for NOx and SO2

emission changes. On average, PM2.5 is more responsive to changes in
anthropogenic primary PM2.5 emissions than NOx and SO2 emissions in
the contiguous U.S.
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